MONOMERS

RADICAL PHOTOCURABLE MONOMERS

Unsaturated polyester resins

Acrylates and Methacrylates

Thiol-ene systems

UNSATURATED POLYESTER RESINS

Photopolymerizable resins consisting of an unsaturated polyester dissolved in styrene were among the first to be used in large scale UV-curing applications. Here the radical initiated crosslinking occurs by direct addition copolymerization of the vinyl monomer with the unsaturations (usually maleic or fumaric structures) located on the polyester backbone.

ACRYLATED AND METHACRYLATED RESINS

Initiation

Propagation

$$C - CH_{2} - CH - CH_{2} - C$$

Termination

$$P_n^{\bullet} + P_m^{\bullet} \longrightarrow P_n P_m$$

$$P_n^{\bullet} \longrightarrow Occlusion$$

EPOXYACRYLATES

ACRYLATE MODIFIED PREPOLYMERS

URETHANE-ACRYLATES

Polyalkylene glycol diacrylate

$$\begin{array}{c} \text{CH}_2\text{=}\text{CH--C-O-(CH}_2\text{--CH}_2\text{--O)}_n\text{--C--CH=CH}_2\\ \text{O} \\ \text{CH}_2\text{=}\text{CH--C-O-(CH}_2\text{--CH}_2\text{--O)}_n\text{--C--CH=CH}_2\\ \text{CH}_3 \\ \text{O} \\ \text{CH}_2\text{=}\text{CH--C-O-(CH}_2\text{--CH}_2\text{--CH}_2\text{--O)}_n\text{--C--CH=CH}_2\\ \end{array}$$

CRITERIA OF SELECTION

OLIGOMER

PROPERTIES

ACRYLATED EPOXIES HARD, SOLVENT RESISTANCE, LOW

COST, FAST CURE

ALIPHATIC URETHANES FLEXIBLE, TOUGH, NON-YELLOWING

AROMATIC URETHANES FLEXIBLE, LOW VISCOSITY

ACRYLICS

GOOD WEATHERING, LOW T_g

POLYESTERS

LOW VISCOSITY, FLEXIBLE

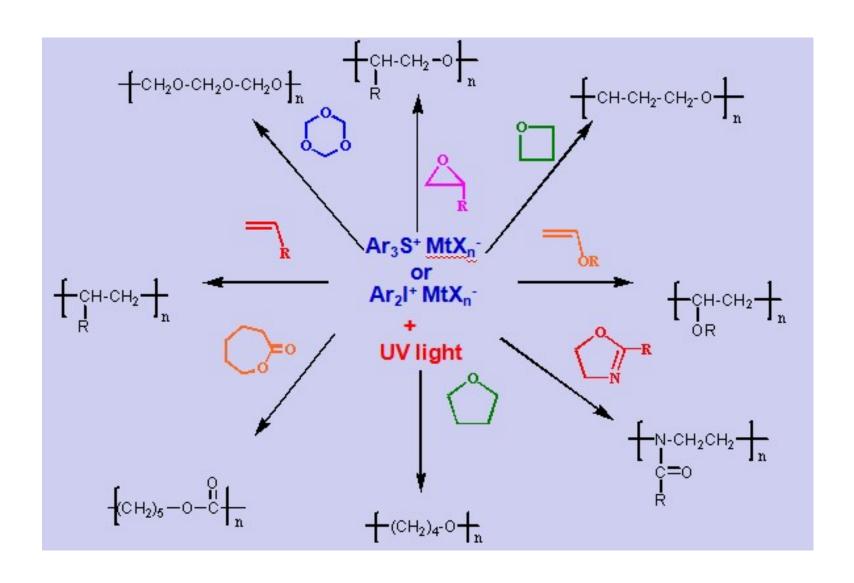
METHODS OF REDUCING OXYGEN INHIBITION

- NITROGEN BLANKETING
- USE OF OXYGEN-INSENSITIVE MONOMERS
- WAX
- AMINE ADDITIVES
- USE OF COVER SHEETS
- LARGE AMOUNTS OF PHOTOINITIATORS

$$R \cdot + - \overset{\mathsf{H}}{-} \mathsf{NH}_2 \longrightarrow R - \mathsf{H} + - \overset{\bullet}{\mathsf{C}} - \mathsf{NH}_2$$

$$-\dot{c}$$
-NH₂ + O₂ \longrightarrow $-\dot{c}$ -NH₂

THIOL-ENE SYSTEMS


C=O + R-SH
$$\longrightarrow$$
 C-OH + R-S $\stackrel{\cdot}{}$

The thiol-ene process proceeds via a chain-growth reaction involving a stoichiometric addition of the thiyl radical to the ene group giving rise to an alternating structure.

No oxygen inhibition

- delaying the onset of gelation
- reactivity also in the absence of photoinitiator-
- reduced shrinkage
- Safer alternative to acrylic monomers

CATIONIC PHOTOCURABLE MONOMERS

Vinyl Monomers

$$R^{+} + CH_{2} = CH
X$$

$$R - CH_{2} - CH^{+}$$

$$R + CH_{2} = CH$$

$$R + CH_{2} - CH^{+}$$

Heterocyclic Monomers

$$R^{+} + X \longrightarrow R^{+}X$$

$$R^{-}X \longrightarrow R^{-}X$$

R⁺ = H⁺, Carbenium ions, Lewis Acids, etc.

VINYL ETHERS

$$R^{+} + CH_{2}=CH-OR' \longrightarrow R-CH_{2}CH-O-R' \longrightarrow R-CH_{2}CH=O-R'$$

Vinyl ether monomers have appeared to be an attractive alternative to acrylates because they possess low toxicity and low odor as well as high reactivity. Vinyl ether exhibit a higher curing rate than epoxides under UV-irradiation and their reactivity is sometimes comparable to the acrylates. The high reactivity of vinyl ethers in cationic polymerization is a consequence of the electron-rich nature of the carbon-carbon double bond. Resonance structures may be drawn which illustrate the stabilization of the resulting carbocation.

PROPERTIES OF VARIOUS MULTIFUNCTIONAL VINYL ETHER MONOMERS

Structure	Properties	References
$CH_2 = CH-O-(CH_2)_2-O-CH = CH_2$	bp = $126 ^{\circ}\text{C}$ $\eta_D^{20} = 1.4338$	C.A. 38,330 (1944)
$CH_1 = CH - O - (CH_1)_3 - O - CH = CH_2$	$bp = 35 ^{\circ}C (50 \text{mm})$	
CH ₃ = CH-O-CH ₂ -CH ₂ -CH-O-CH = CH ₂ I CH ₃	bp = 75°C (60 mm)	
$CH_2 = CH \cdot O - (CH_2)_2 - O \cdot CH = CH_2$	$bp = 100 {}^{\circ}C (15 mm)$	
$CH_2 = CH - (O - CH_2 - CH_2)_2 - O - CH = CH_2$	bp = 110°C (18 mm)	U.S. 1,959,927; PB 87, 917
$CH_2 = CH - (O - CH_2 - CH_2)_3 - O - CH = CH_2$	bp = 126 °C (18 mm)	U.S. 1,956,927; PB 87,917
$CH_2 = CH - O - (CH_2)_4 - O - CH = CH_2$	$bp = 41-42 {}^{\circ}\text{C} (0.65 \text{mm})$	
$CH_2 = CH-O-(CH_2)_2 O-(CH_2)_2 O-(CH_2)_2 O-CH = CH_2$	bp = 102-104 °C (0.25 mm)	
CH ₂ = CH-O-CH ₂ —CH ₂ -O-CH = CH ₂ (cis and trans)	bp = 118°C (5 mm)	

PROPENYL ETHERS

ROH +
$$CICH_2CH=CH_2$$
 \longrightarrow ROCH $_2CH=CH_2$ $(Ph3P)RuC12$ \bigcirc ROCH=CHCH $_3$

EPOXIDES

$$R_1$$
 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_2

EPOXIDES

$$PhI^{+}X^{-} + R-H \longrightarrow PhI + H^{+}X^{-} + R$$

$$H^+ X^- + \bigvee_{0} \longrightarrow \bigvee_{0+X^-} \bigvee_{0} \longrightarrow \bigvee_{0} X^-$$

In the presence of a photogenerated protonic acid, the ring-opening polymerization of epoxides proceeds through the oxonium ion.

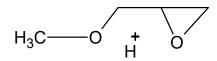
PHOTOPOLYMERIZABLE EPOXY RESINS

Monofunctional Epoxies

Difunctional Epoxies

Epoxy Prepolymers

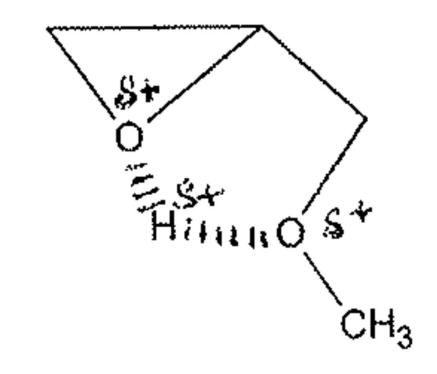
and Higher Oligomers


$$CH_{2} - CH_{2} - CH_{3}$$

$$CH_{3} - CH_{3} - CH_{3} - CH_{3} - CH_{3}$$

$$CH_{3} - CH_{3} - CH_{3} - CH_{3} - CH_{3}$$

$$CH_{3} - CH_{3} - CH_{3} - CH_{3} - CH_{3} - CH_{3} - CH_{3}$$


Stabilisation of oxonium ion through hydrogen bonding

See: J V Crivello, Polymer Preprints, 2007, *48(1)* 316-317

Deactivating effect of carbonyl groups

See: H Sasaki, Proceedings RadTech North America, 2004, Paper 2.4

Factors Affecting the Efficiency and Speed of Cationic UV Curing

Photoinitiator Structure

Structure of the cation - governs absorption characteristics

Structure of the anion - controls the strength of the acid generated SbF_6 > AsF_6 > PF_6 > BF_4

Presence of a Photosensitizer

Broadens the spectral sensitivity

Polymerizable Substrate and Composition

Reactivity - Vinyl ethers > Epoxides

Epoxides: cycloaliphatic > linear aliphatic > glycidyl ethers > glycidyl esters

Functionality - tri > di > mono

Substrate thickness

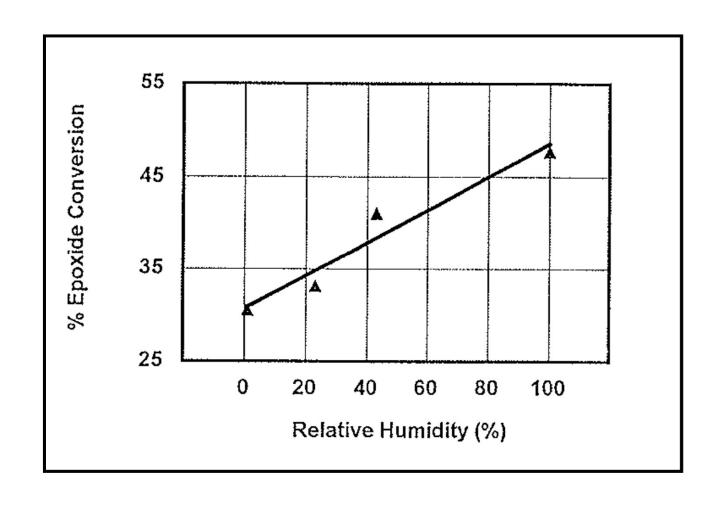
Substrate absorption characteristics

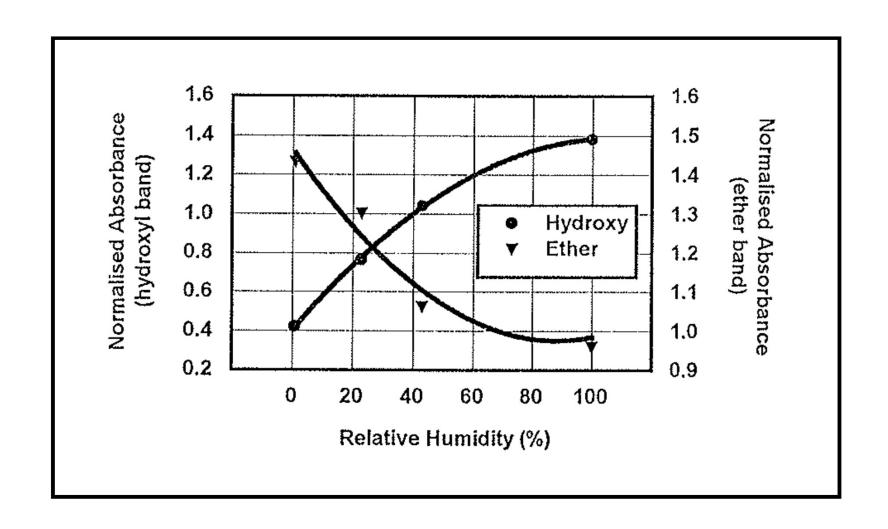
Presence of fillers/pigments

Presence of chain transfer agents and inhibitors

Environmental Parameters

Light intensity - determines no. of photons


Emission wavelength - should be matched to photoinitiator


Substrate temperature - determines rate of postcure

Activated chain end mechanism (ACE)

Activated monomer mechanism (AM)

Humidity effect on epoxy group conversion

